Modulus and Argument of z=−1−i√3
Step 1 : Given z=−1−i√3
Modulus of complex number, r=√x2+y2
⇒r=√(−1)2+(−√3)2⇒r=√1+3⇒r=2
∴ modulus r=2
Step 3 : ∵z lies in the third quadrant
∴ Argument =−(π−tan−1∣∣yx∣∣)=−(π−tan−1∣∣∣−√3−1∣∣∣)
∴ Argument =−2π3
Modulus and Argument of complex number −1−i√3 are 2 and−2π3 respectively.