Consider the given complex expression ,
2+14i(2−i)2
2+14i(2−i)2=2+14i(4+i2−2i)
∵i2=−1
=2+14i4−1−4i
=2+14i3−4i
Rationalize
2+14i3−4i×3+4i3+4i
Now ,2+14i3−4i×3+4i3+4i=6+50i+56i2(3)2−(4i)2
6+50i+56i2(3)2−(4i)2=6+50i+56i232−16i2
6+50i+56(−1)9−16(−1)=6+50i−569+16
50i−5025=i−1=−1+i
Now,
−1+i= r(cosθ+isinθ) …..(1)
−1=rcosθ ….(2)
1=rsinθ ……(3)
Now taking square and add equations (2) and (3), we get
2=r2(cos2θ+sin2θ)
2=r2(1)
r=√2
Now divided equation (3) by equation (2), we get
sinθcosθ=−1
tanθ=−tanπ4
tanθ=tan(π−π4)=tan3π4
tanθ=tan3π4
θ=3π4
Put the value of r and θ in equation (1), we get
−1+i=√2(cos3π4isin3π4)
Hence, this is the required question.