wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the modulus and argument of the following complex numbers and hence express each of them in the polar form:
(i) 1 + i
(ii) 3+i
(iii) 1 − i
(iv) 1-i1+i
(v) 11+i
(vi) 1+2i1-3i
(vii) sin 120°-i cos 120°
(viii) -161+i3

Open in App
Solution

i z=1+i r=z =1+1 =2Let tan α=ImzReztan α =11 α =π4Since point (1,1) lies in the first quadrant, the argument of z is given by θ= α =π4Polar form =rcos θ+isin θ =2cosπ4+isinπ4ii z=3+ir=z =3+1 =4 =2Let tan α=ImzReztan α =13 α =π6Since point (3,1) lies in the first quadrant, the argument of z is given by θ= α =π6

Polar form =r cosθ +isinθ =2 cos π6+isin π6

(iii) z=1-i r=z =1+1 =2Let tan α=ImzRez tanα =-11 =π4α =π4Since point (1,-1) lies in the fourth quadrant, the argument of z is given by θ=-α =-π4Polar form =rcos θ+isin θ =2cos-π4+isin-π4 =2cosπ4-isinπ4

(iv) 1-i1+iRationalising the denominator:1-i1+i×1-i1-i 1+i2-2i1-i2 -2 i2 i2=-1-ir=z =0+1 =1Since point (0,-1) lies on the negative direction of the imaginary axis, the argument of z is given by 3π2.Polar form =rcos θ+isin θ =cos3π2+isin3π2 = cos2π-π2+isin2π-π2 =cosπ2-isinπ2

(v) 11+iRationalising the denominator: 11+i×1-i1-i 1-i1-i2 1-i2 i2=-112-i2r=z =14+14 =12Let tan α =Im(z)Re(z) tan α=12-12 =1 α =π4Since point 12,-12 lies in the fourth quadrant, the argument is given by θ=-α=-π4Polar form =rcos θ+isin θ =12cos-π4+isin-π4 =12 cosπ4-isinπ4

(vi) 1+2i1-3iRationalising the denominator:1+2i1-3i×1+3i1+3i 1+3i+2i+6i21-9i2 -5+5i10 i2=-1-12+i2r=z =14+14 =12Let tan α =Im(z)Re(z) Then, tan α=12-12 =1 α =π4Since point -12,12 lies in the second quadrant, the argument is given byθ=π-α =π-π4 =3π4Polar form =rcos θ+isin θ =12cos3π4+isin3π4

(vii) sin 120°-i cos 120° 32+i2r=z =34+14 =1Let tan α=Im(z)Re(z)Then, tan α=1232 =13α=π6Since point 32,12 lies in the first quadrant, the argument is given by θ=α=π6Polar form =rcosθ+i sinθ = cos π6+i sin π6


(viii) -161+i3Rationalising the denominator: -161+i3×1-i31-i3 -16+163i1-3i2 -16+163i4 i2=-1-4+43ir=z =16+48 =8Let tan α =Im(z)Re(z) Then, tan α=43-4 =3 α =π3Since the point -4,43 lies in the third quadrant, the argument is given by θ=π-α =π-π3 =2π3Polar form =rcos θ+isin θ =8cos2π3+isin2π3

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon