Modulus and argument. z=−√3+i
Step 1 : Given z=−√3+i
Step 2 : Modulus of complex number r=√x2+y2
⇒r=√(−√3)2+(1)2
⇒r=√3+1⇒r=2
∴ modulus r=2
Step 3 : ∵z lies in the second quadrant.
∴ Argument =(π−tan−1∣∣yx∣∣)=(π−tan−1∣∣∣1−√3∣∣∣)=π−π6=5π6
∴ Argument =5π6
Modulus and Argument of complex number −√3+i are 2 and 5π6 respectively.