z=−1−i√3
Let rcosθ=−1andrsinθ=−√3
On squaring and adding, we obtain
(rcosθ)2+(rsinθ)2=(−1)2+(−√3)2
⇒r2(cos2θ+sin2θ)=1+3
⇒r2=4[cos2θ+sin2θ=1]
⇒r=√4=2 (Conventionally,r>0 )
∴ Modulus of z i.e |z|=2
∴2cosθ=−1and2sinθ=−√3
Since both the values of sinθ and cosθ are negative and sinθ and cosθ are negative in III quadrant,
Argument =−(π−π3)=−2π3
Thus, the modules and argument of the complex number −1−√3i are 2 and −2π3 respectively.