Given, z=−√3+i
Let rcosθ=−√3 and rsinθ=1
On squaring and adding, we obtain
r2cos2θ+r2sin2θ=(−√3)2+12
⇒r2=3+1=4 (∵cos2θ+sin2θ=1)
⇒r=√4=2 (Conventionally r>0)
∴ Modulus of z i.e. |z|=2
∴2cosθ=−√3 and 2sinθ=1
⇒cosθ=−√32andsinθ=12
∴θ=π−π6=5π6 [As θ lies in the II quadrant]
Thus, the modulus and argument of the complex number −√3+i are 2 and 5π6