Find the modulus and the arguments of each of the complex numbers
z=−1−i√3
Here z=−1−i√3=r(cos θ+i sin θ)
⇒ r cos θ=−1 and r sin θ=−√3…(i)
Squaring both sides of (i) and adding
r2(cos2θ+sin2θ)=1+3
⇒ r2=4 ⇒ r=2
∴2 cos θ=−1 and 2sin θ=−√3
⇒cos θ=−12 and sin θ=−√32
Since both sin θ and cos θ are negatie.
∴ θ lies in third quadrant.
∴θ=(−π+π3)=−2π3
∴|z|=2 and arg(z)=−2π3