Find the modulus and the arguments of each of the complex numbers
z=−√3+i
Here z=−√3+i=r(cos θ+i sin θ)
⇒r cos θ=−√3 and r sin θ=1…(i)
Squaring both sides of (i) and adding
r2(cos2 θ+sin2 θ)=3+1
⇒ r2=4 ⇒ r=2
∴2 cos θ=−√3 and 2sin θ=1
⇒ cos θ=−√32 and sin θ=12
Since sin θ is positive and cos θ is negative
∴ θ lies second quadrant
∴ θ=(π−π6)=5π6
∴ |z|=2 and arg(z)=5π6