(a) Let 1=rcosθ −1=rsinθ
Squaring and adding these relations, we get
r2(cos2θ+sin2θ)=12+(−1)2=2
or r2=2 i.e. r=√2
Then cosθ=1╱√2, sinθ=−1╱√2,
The value of θ between −π and π which satisfies these equations is −(π╱4),
Thus |1−i|=r√2 and arg(1−i)=−(π╱4).
(b) Ans. ∣∣−1−√3i∣∣=2,
(−1−√3i)=−(2π╱3)
∵arg(1+√3i)=π╱3
∵arg(1+√3i)=π−π3=2π3
or arg(1+√3i)=2π3
(c) Let r cosθ=1+√2, rsinθ=1.
Then r2=(1+√2)2+1=4+2√2,
∴r=√4+2√(2).
On dividing , tanθ=1√(2)+1=√2−12−1=√2−1
Hence θ=π╱8 (Standard result) as proved below.
α=π4∴α2=π8∴tanπ4=2t1−t2=1
when t=tan(α╱2)=tan(π╱8) or 1−t2=2t1−t2+2t+1=1+1
or (t+1)2=(√2)2
∴=t=±√2−1=√2−1
The other value −√2−1 is being rejected as tanπ╱8 is + ive.
Hence ∣∣1+√2+i∣∣=√4+2√(2) and arg (1+√2+i)=π╱8