Find the modulus, argument and the principal argument of the complex numbers.
z=1+cos10π9+isin(10π9)
A
Principal Arg z=−4π9;|z|=2cos4π9;Argz=2kπ−4π9kϵl
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
Principal Arg z=−10π9;|z|=2cos10π9;Argz=2kπ−10π9kϵl
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
Principal Arg z=−−10π9;|z|=2cos−10π9;Argz=2kπ−4π9kϵl
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
Principal Arg z=−−4π9;|z|=2cos−4π9;Argz=2kπ−4π9kϵl
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is A Principal Arg z=−4π9;|z|=2cos4π9;Argz=2kπ−4π9kϵl Simplifying, we get z=2cos2(5π9)+2isin(5π9)cos(5π9) =2cos(5π9)[cos(5π9)+isin(5π9)] =−2cos(4π9)[−cos(4π9)+isin(4π9)] =2cos(4π9)[cos(4π9)−isin(4π9)] Hence |z|=2cos(4π9) And Principal Arg(z)=−4π9