Find the multiplicative inverse of the following complex numbers :
(i) 1−i(ii) (1+i√3)2(iii) 4−3i(iv) √5+3i
(i) 1 - i
If z = x + iy is a complex number, then the multiplicative inverse of z, denoted by z−1 or 1z is defined as z−1=1z
=1x+iy=1x+iy×x−iyx−iy=x−iyx2+y2=xx2+y2−yx2+y2iGiven:z=1−i∴ z−1=112+12−(−1)12+12×i12+12i
(ii) (1+i√3)2Let z=(1+i√3)2=12+(i√3)2+2×1×i√3=1−3+2√3i=−2+2√3i∴ z−1=−2(−2)2+(2√3)2−2√3i(−2)2+(2√3)2=−24+12−2√3i4+12=−216−2√3i16=−18−√3i8
(iii) 4−3iLet z=4−3iThen z−1=442+(−3)2−(−3)42+(−3)2=416+9+316+9i=425+325i
(iv) √5+3iLet z=√5+3iThen z−1=√5(√5)2+(3)2−3(√5)2+(3)2i=√55+9−35+9i=√514−314i