Let S=2+12+36+80+150+252+...+Tn (i)
S=2+12+36+80+150+252+...+Tn−1+Tn (ii)
(i)-(ii) ⇒ Tn=2+10+24+44+70+102+...+(Tn−Tn−1) (iii)
Tn=2+10+24+44+70+102+...+(Tn−1−Tn−2)+(Tn−Tn−1) (iv)
(iii)-(iv) ⇒ Tn−Tn−1=2+8+14+20+26+...
=n2[4+(n−1)6]=n[3n−1]⇒Tn−Tn−1=3n2−n
∴ general term of given series is ∑(Tn−Tn−1)=∑(3n2−n)=n3+n2.
Hence sum of this series is
S=∑n3+∑n2=n2(n+1)24+n(n+1)(2n+1)6=n(n+1)12(3n2+7n+2)
=112n(n+1)(n+2)(3n+1)