Given Series S=2+7x+25x2+91x3+....
a1=2=(30+40)a3=(32+42)x2a2=7x=(31+41)xa4=(33+43)x3
Hence,
an=(3n−1+4n−1)xn−1
Let the scale of relation be 1−px−qx2
Taking coefficient of x0,x1,x2 we get 25−7p−2q=0(1)
Taking coefficient of x1,x2,x3 we get 91−25p−7q=0(2)
(1)×7−(2)×2 we get
175=49p+14q−182=−50p+(−14q)−7=−pp=7
Putting this value of p in equation (1)
25−7×7=2q−24=2qq=−12
Scale of relation is 1−7x+12x2
S=2+7x+25x2+91x3+....−7xS=−14x−49x2−175x3−...12x2S=24x2+84x3
Adding above equations,
(1−7x+12x2)S=2−7xS=2−7x1−7x+12x2