Find the natural number a for which n∑k=1f(a+k)=16(2n−1), where the function f satisfies the relation f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2.
Open in App
Solution
We are given that f(x+y)=f(x)f(y) and f(1)=2 ∴f(2)=f(1+1)=f(1).f(1)=2.2=22 f(3)=f(2+1)=f(2).f(1)=22.2=23 f(4)=24 etc. Now n∑k=1f(a+k)=n∑k=1f(a)f(k)=2an∑k=1f(k) =2a[2+22+23+....+2n] =2a+1[1+2+22+....+nterms] =2a+11.(2n−1)2−1=2a+1(2n−1) =16.(2n−1) [ Given] ∴2a+1=16=24