wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the natural number a for which nk=1f(a+k)=16(2n1) where the function f satisfies f(x+y)=f(x)f(y) for all natural numbers x,y and further f(1)=2

Open in App
Solution

It is given that,
f(x+y)=f(x)f(y) and f(1)=2
f(1+1)=f(1)f(1)
f(2)=2.2=22
f(1+2)=f(1)f(2)
f(3)=2.22=23
f(2+2)=f(2)f(2)
f(4)=22.22=24
......................................
......................................
......................................
Similarly, f(k)=2k and f(a)=2a
Hence, nk=1f(a+k)=nk=1f(a)f(k)
=f(a)kk=1f(k)=2akk=12k
=2a{21+22+23+.....+2n}
=2a{2.(2n1)21}
But, nk=1f(a+k)=16(2n1)
2a+1(2n1)=16(2n1)
2a+1=24
a+1=4
a=3

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon