It is given that,
f(x+y)=f(x)f(y) and f(1)=2
⇒f(1+1)=f(1)f(1)
∴f(2)=2.2=22
⇒f(1+2)=f(1)f(2)
∴f(3)=2.22=23
⇒f(2+2)=f(2)f(2)
∴f(4)=22.22=24
......................................
......................................
......................................
Similarly, f(k)=2k and f(a)=2a
Hence, ∑nk=1f(a+k)=∑nk=1f(a)f(k)
=f(a)∑kk=1f(k)=2a∑kk=12k
=2a{21+22+23+.....+2n}
=2a{2.(2n−1)2−1}
But, ∑nk=1f(a+k)=16(2n−1)
∴2a+1(2n−1)=16(2n−1)
⇒2a+1=24
⇒a+1=4
∴a=3