wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the natural number a for which nk=1f(a+k)=16(2n1) where the function f satisfies the relation f(x+y)=f(x).f(y) for all natural numbers x,y and further f(1)=2.

Open in App
Solution

f(x+y)=f(x).f(y),f(1)=2
nk=1f(a+k)=16(2n1)
f(a).f(1)+f(a).f(2)+...+f(a).f(n)=16(2n1)
f(a).[f(1)+f(2)+...+f(n)]=16(2n1)
Also, f(2)=f(1+1)=f(1).f(1)=[f(1)]2=4
Similarly, f(3)=f(2+1)=f(2).f(1)=4×2=8
f(a).[f(1)+f(2)+...+f(n)]=16(2n1) becomes f(a).[2+4+8+...+2n]=16(2n1)
f(a).[2(2n1)]=16(2n1)
Thus, f(a)=8 which implies a=3

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon