We have,
2x2−9x+9=0
Comparing that,
ax2+bx+c=0
Then,a=2,b=−9,c=9
We know that,
Nature of roots are
D=b2−4ac
=(−9)2−4×2×9
=81−72
=9>0
Roots are real.
Finding them,
2x2−9x+9=0
2x2−(6+3)x+9=0
2x2−6x−3x+9=0
2x(x−3)−3(x−3)=0
(x−3)(2x−3)=0
If x−3=0 then, x=3
If 2x−3=0 then, x=32
Hence, x=3,32 is the answer.