(iii)2x2−6x+3=0
Comparing this equation with ax2+bx+c=0, we get
a=2,b=−6,c=3
Discriminant=b2−4ac
=(−6)2−4(2) (3)
=36−24=12
As b2−4ac>0,
Therefore, distinct real roots exist for this equation:
x=−b±b2−4ac2a=−(−6)±√(−6)2−4(2)(3)2(2)=6±√124=6±√34=3±√32Therefore,the root are3+√32and3−√32