We have
3x+y+z=24 and given x≥0,y≥0,z≥0
Let x=k
∴y+z=24−3k...(i)
Here 24≥24−3k≥0(∵x≥0)
Hence, 0≤k≤8
The total number of integral solutions of (i) is
24−3k+2−1C2−1=25−3kC1=25−3k
Hence the total number of solutions of the original equation
= 8∑k=0(25−3k)=258∑k=01−38∑k=0k
=25.9−38.92=225−108=117