Let x(x−1)+2yz= λ ...........(1)
y(y−1)+2zx= λ .............(2)
z(z−1)+2xy = λ.............(3)
(2) -(1) ⇒y2−x2−y+x+2z(x−y)=0
(x−y)(x+y−1−2z) = 0
Similarly (y−z)(y+z−1−2x)= 0
(z−x)(z+x−1−2y) = 0
Case −Ix≠y≠z
x+y−1−2z =0
y+z−1−2x=0
z+x−1−2y=0
Adding ⇒ -3=0 contradiction
No solution
Case−II Any two are equal
x=y≠z⇒(y−z)(z−1−x)=0,
z−1−x =0 ⇒ z = x+1
⇒ (x−y,y−z,z−x)= (0,−1,1)
Similarly x≠y=z⇒(1,0,−1)
x≠y=z⇒(−1,1,0)
Three solutions
Case−IIIx=y=z⇒(x−y,y−z,z−x)=(0,0,0)
One solution
Total 4 solutions