The correct option is B 2
log100|x+y|=12 ⇒ (100)12=|x+y|
⇒ |x + y| = 10 . . . (1)
Again, log10y−log10|x|=log1004
log10y−log10|x|=log102⇒ log10y|x|=log102
⇒ y = 2|x| . . .(2)
From eq. (2) we can conclude that y is always positive.
Now, when x > 0 and y > 0 (always)
|x + y| = 10 ⇒ |x + 2|x|| = 10
⇒ x + 2 |x| = 10 (∵ x > 0)
⇒ x + 2x = 10
⇒ x=103
∴ y=203
Again, x < 0 and y > 0 (always positive)
|-x + 2| - x|| = 10
⇒ |- x + 2x| = 10
⇒ |x| = 10
⇒ x = -10 (∵ x < 0)
∴ y = 20
Hence, x = -10, y = 20 and x=103 and y=203.