Find the number of positive integers satisfying the equation x+log10(2x+1)=xlog105+log106.
Open in App
Solution
x+log10(2x+1)=xlog105+log106 ⇒xlog1010+log10(2x+1)=xlog105+log106[∵logaa=1] ⇒log1010x+log10(2x+1)=log105x+log106[∵mloga=logam] ⇒log1010x(2x+1)=log105x6[∵loga+logb=log(ab)] ⇒2x5x(2x+1)=6⋅5x ⇒(2x)2+2x−6=0 ⇒2x=2as2x=−3 is not possible ⇒x=1 Ans: 1