√2x2+1x2−1+6√x2−12x2+1=5
Let
2x2+1x2−1=t
√t+6√t=5
squaringbothsides
(√t+6√t)2=(5)2
⇒t+36t+12=25[∵(a+b)2=a2+b2+2ab]
⇒t2+36+12tt=25
⇒t2+12t+36=25t
⇒t2+12t+36−25t=0
⇒t2−13t+36=0
⇒(t−9)(t−4)=0
t=9,4
2x2+1x2−1=9
⇒2x2+1=9x2−9
⇒7x2=10
⇒x2=107
x=±√107
2x2+1x2−1=4
⇒2x2+1=4x2−4
⇒2x2=5
⇒x2=52
x=±√52
Hence the given equation has 4 real roots