The given equation can be rewritten in the form 1−2(logx2)2logx−2(logx)2=1
⇒1−8(logx)2logx−2(logx)2−1=0
Let logx=t, then 1−8t2t−2t2−1=0
⇒1−8t2−t+2t2t−2t2=0⇒1−t−6t2(t−2t2)=0(1+2t)(1−3t)t(1−2t)=0
⇒⎧⎪
⎪⎨⎪
⎪⎩t=−12t=13
⇒⎧⎪
⎪⎨⎪
⎪⎩logx=−12logx=13⇒{x1=10−12x2=1013
Hence, x1=1√10 and x2=3√10 are the roots of the original equation.