Find the number of solutions for the equation using Cramer's rule:
Using Cramer's rule, find the determinant of the coefficient matrix,
D=∣∣∣5−71−2∣∣∣=5×−2−(1×−7)
D=−10+7=−3
Secondly, find the determinant of x coefficient matrix,
Dx=∣∣∣−27−7−9−2∣∣∣=−27×−2−(−9×−7)
Dx=5463=−9
Similarly, find the determinant of y coefficient matrix,
Dy=∣∣∣5−271−9∣∣∣=5×−9−(1×−27)
∴Dy=−45+27=−18
Therefore, D=−3≠0,Dx=−9≠0,Dy=−18≠0 the equation has an unique solution.