wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the number of solutions of the equation
sin5xcos3x=sin6xcos2x,x[0,π]

Open in App
Solution

2sin5xcos3x=sin(5x+3x)+sin(5x3x)=sin8x+sin2x
2sin6xcos2x=sin(6x+2x)+sin(6x2x)=sin8x+sin4x

ie, sin5xcos3x=sin6xcos2xsin8x+sin2x=sin8x+sin4x
sin4x=sin2x

But, sin4x=2sin2xcos2x
sin4x=sin2x2cos2x=1 or sin2x=0

for cos2x=12,
x=π6,5π6

for sin2x=0
x=0,π2,π

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon