wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the number of solutions of the equations
(sinx1)3+(cosx1)3+(sinx)3=(2sinx+cosx2)3 in [0,2π]

Open in App
Solution

Given,
(sinx1)3+(cosx1)3+(sinx)3=(2sinx+cosx2)3----------------1
We know that, (a+b+c)3=a3+b3+c3+(a+b+c)(ab+bc+ca)
Here a=sinx1,b=cosx1,c=sinx
(a+b+c)=(2sinx+cosx2)
(ab+bc+ca)=(2sin2x+2sinxcosx3sinxcosx+1)
(1)(sinx1)3+(cosx1)3+(sinx)3=(sinx1)3+(cosx1)3+(sinx)3+(2sinx+cosx2)(2sin2x+2sinxcosx3sinxcosx+1)
(2sinx+cosx2)(2sin2x+2sinxcosx2sinxsinxcosx+1)=0
(2sinx+cosx2)(2sinx1)(sinx+cosx1)=0
(i) sinx=12
x=π6,5π6 ( as x[0,2π])
or
(ii) sinx+cosx=1
x=0,π2,2π ( as x[0,2π])
or
(iii) 2sinx+cosx2=0
2(sinx1)=cosx
4sin2x8sinx+4=cos2x
5sin2x8sinx+3=0
sinx=1or35
cosx=2(1sinx)
=2(135)=45
sinx>0 and cosx>0
x has one solution in 1st quadrant.
From (i),(ii),(iii), number of solutions of x=6

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon