Given,
(sinx−1)3+(cosx−1)3+(sinx)3=(2sinx+cosx−2)3----------------1
We know that, (a+b+c)3=a3+b3+c3+(a+b+c)(ab+bc+ca)
Here a=sinx−1,b=cosx−1,c=sinx
(a+b+c)=(2sinx+cosx−2)
(ab+bc+ca)=(2sin2x+2sinxcosx−3sinx−cosx+1)
(1)(sinx−1)3+(cosx−1)3+(sinx)3=(sinx−1)3+(cosx−1)3+(sinx)3+(2sinx+cosx−2)(2sin2x+2sinxcosx−3sinx−cosx+1)
⇒(2sinx+cosx−2)(2sin2x+2sinxcosx−2sinx−sinx−cosx+1)=0
⇒(2sinx+cosx−2)(2sinx−1)(sinx+cosx−1)=0
(i) sinx=12
∴x=π6,5π6 ( as x∈[0,2π])
or
(ii) sinx+cosx=1
∴x=0,π2,2π ( as x∈[0,2π])
or
(iii) 2sinx+cosx−2=0
2(sinx−1)=−cosx
4sin2x−8sinx+4=cos2x
5sin2x−8sinx+3=0
∴sinx=1or35
cosx=2(1−sinx)
=2(1−35)=45
sinx>0 and cosx>0
∴ x has one solution in 1st quadrant.
From (i),(ii),(iii), number of solutions of x=6