The correct option is A n=16 and n=9
Let the first term be 'a' and common difference be 'd'
t3=20,t8=10
⇒a+2d=20 ............(1)
⇒a+7d=10 ............(2)
Subtracting (1) from (2), we get:
a+7d=10
a+2d=20
____________
5d=−10⇒d=−105
d=−2
Substituting d = -2 in (1), we get:
a+2d=20⇒a+2(−2)=20
⇒a=20+4⇒a=24
Let the number of terms in given A.P. be 'n'
Sn=144
⇒n2(2a+(n−1)d)=144
⇒n2(2×24+(n−1)(−2))=144
n2(48−2n+2)=144
⇒n2(50−2n)=144
⇒n2×2(25−n)=144
25n−n2−144=0
⇒−(n2−25n+144)=0
⇒n2−25n+144=0
⇒n2−16n−9n+144=0
⇒n(n−16)−9(n−16)=0
⇒(n−16)(n−9)=0
⇒n−16=0,n−9=0
∴n=16∴n=9