wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the number of terms of an arithmetic progression whose third term is 20, 8th term is 10 and the sum of terms is 144.

A
n=16 and n=9
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
n=15 and n=8
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
n=14 and n=7
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
None of these
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A n=16 and n=9
Let the first term be 'a' and common difference be 'd'
t3=20,t8=10
a+2d=20 ............(1)
a+7d=10 ............(2)
Subtracting (1) from (2), we get:
a+7d=10
a+2d=20
____________
5d=10d=105
d=2
Substituting d = -2 in (1), we get:
a+2d=20a+2(2)=20
a=20+4a=24
Let the number of terms in given A.P. be 'n'
Sn=144
n2(2a+(n1)d)=144
n2(2×24+(n1)(2))=144
n2(482n+2)=144
n2(502n)=144
n2×2(25n)=144
25nn2144=0
(n225n+144)=0
n225n+144=0
n216n9n+144=0
n(n16)9(n16)=0
(n16)(n9)=0
n16=0,n9=0
n=16n=9

flag
Suggest Corrections
thumbs-up
10
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Constellations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon