The correct option is A 1
(1+cos(x)+cos(2x))+(sinx+sin2x+sin3x)=0
(1+cos(x)+2cos2x−1)+(sinx+sin3x+sin2x)=0
(2cos2(x)+cos(x))+(2sin2x.cosx+sin2x)+0
cos(x)(2cos(x)+1)+sin2x(2cos(x)+1)=0
(cos(x)+sin2x)(2cos(x)+1)=0
2cos(x)+1=0
cos(x)=−12
Hence x=2π3,4π3
And
cosx+sin2x=0
cosx+2sin(x)cos(x)=0
cos(x)[1+2sin(x)]=0
cos(x)=0 and sin(x)=−12
x=π2,3π2 and x=7π6,−π6.
Now
π2<|3x−π2|≤π
|3x−π2|>π2
Or
3x−π2>π2 and 3x−π2<−π2
x<0 and x>π3 ...(i)
and
|3x−π2|≤π
−π≤3x−π2≤π
−2π≤6x−π≤π
−π6≤x≤π3... (ii)
Hence from i and ii
−π6≤x<0
Hence in the above range we get only one solution of the above equation, that is =−π6.
Hence answer is 1.