wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the number of values of p for which equation sin3x+1+p33psinx=0(p>0) has a root.

Open in App
Solution

We know that if a3+b3+c3=3abc then (a+b+c)(a2+b2+c2abbcca)=0

Given: sin3x+1+p33psinx=0
sin3x+1+p3=3psinx×1
(sinx+1+p)(sin2x+1+p2sinxppsinx)=0
sinx+1+p0,sin2x+1+p2sinxppsinx=0
22(2sin2x+2+2p22sinx2p2psinx)=0
2sin2x+2+2p22sinx2p2psinx=0

Rearranged as
(12p+p2)+(sin2x2psinx+p2)+(12sinx+sin2x)=0
(p1)2+(sinxp)2+(sinx1)=0
p1=0,sinxp=0,sinx1=0
p=1,sinx=p,sinx=1
sinx=p=1
Hence p=1
Number of values of p is 1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Nature and Location of Roots
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon