(1−x)=cos[2((π2)−cos−1x)](1−x)=cos(π−2cos−1x)(1−x)=−cos(2cos−1x)x−1=cos[cos−1(2x2−1)]x−1=2x2−1or2x2−x=0x(2x−1)=0x=0orx=(12)
Hence, there are 2 values of x which can satisfy the given equation.