Find the p values of the following questions:
tan−1(1)+cos−1(−12)+sin−1(−12)
Given expression is not a standard identity, so we separately find the value of tan−1(1),cos−1(−12),sin−1(−12) and simplify it.
Let tan−1(1)=x⇒tan x=1=tanπ4⇒x=π4
where principal value xε(−π2,π2) ∴ tan−1(1)=π4
Let cos−1(−12)=y⇒cos y=−12=−cos(π3)=cos(π−π3)=cos(2π3) (∵cos (π−θ)=−cosθ)
⇒ y=2π3, where principal value of yε[0,π]
∴ cos−1(−12)=2π3
Let sin−1(−12)=z⇒sin z=−12=−sin(π6)=sin(−π6)
⇒ z=−π6, where principal value zϵ[−π2,π2]
∴ sin−1(−12)=−π6∴ tan−1(1)+cos−1(−12)+sin−1(−12)=x+y+z=π4+2π3−π6=3π+8π−2π12=9π12=3π4