The correct option is B x=2+6t, y=3−3t2
Given: x2−4x−32=−12y
⇒x2−4x+4−4−32=−12y
⇒(x−2)2=−12(y−3)
Comparing the given equation with X2=−4aY
a=3, X=x−2, Y=y−3
Parametric form for X2=−4aY is
X=2at,Y=−at2
Put X=x−2, Y=y−3, we get
(i) x−2=2at⇒x=2+6t ⋯(1)(ii) y−3=−at2⇒y=3−3t2 ⋯(2)
Hence required parametric form:
x=2+6t, y=3−3t2