x(x2−1)dy=dx
dy=dxx(x2−1)
Integrating on both sides
∫dy=∫dxx(x2−1)
y=∫dxx(x+1)(x−1) …………..(1)
We can write
1x(x+1)(x−1)=Ax+B(x+1)+C(x−1)
$
By cancelling the denominators
1=A(x−1)(x+1)+Bx(x−1)+C(x+1).x
Putting x=0
1=A(0−1)(0+1)+B.0(0−1)+C.0(0+1)
1=−A
A=−1
Similarly putting x=−1
1=A(−1−1)(−1+1)+B(−1)(−1−1)+C(−1)(−1+1)
1=A(−2)(0)+B(−1)(−2)+C:0
1=0+2B+0
2B=1
B1/2
Putting x=1
1=A(1−1)(1+1)+B(1)(1−1)+C.1(1+1)
1=20.A+0.B+2C
1=2C
C=1/2
Therefore 1x(x+1)(x−1)=−1x+1/2(x+1)−1/2(x−1)
Now, from (1)
y=∫1(x(x+1)(x−1)⋅dx
=∫1x+dx+1/2∫dxx+1+12∫dxx−1
=log|x|+12.log|x+1|+12log|x−1|+c
=−22log|x|+12log|x+1|+12log|x−1|+c
=12[−2log|x|−2+log|(x+1)(x−1)|]+c
=12[logx−2log|(x+1)(x−1)|]+c
=12[log|x−2(x2−1)|]+c [∵loga+logb−logab]
=12log∣∣∣x2−1x2∣∣∣+c
∴y=12log∣∣∣x2−1x2∣∣∣+c …………..(1)
Given that
x=2;y=0
Substituting values in (1), we get
0=12log∣∣∣22−122∣∣∣+c
0=12log34+c
c=−12log34
Putting value of c in (1)
y=12log∣∣∣x2−1x2∣∣∣−12log3/4.