wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of differential equal x(x21)dydx=1;y=0 and x=2.

Open in App
Solution

x(x21)dy=dx
dy=dxx(x21)
Integrating on both sides
dy=dxx(x21)
y=dxx(x+1)(x1) …………..(1)
We can write
1x(x+1)(x1)=Ax+B(x+1)+C(x1)
$
By cancelling the denominators
1=A(x1)(x+1)+Bx(x1)+C(x+1).x
Putting x=0
1=A(01)(0+1)+B.0(01)+C.0(0+1)
1=A
A=1
Similarly putting x=1
1=A(11)(1+1)+B(1)(11)+C(1)(1+1)
1=A(2)(0)+B(1)(2)+C:0
1=0+2B+0
2B=1
B1/2
Putting x=1
1=A(11)(1+1)+B(1)(11)+C.1(1+1)
1=20.A+0.B+2C
1=2C
C=1/2
Therefore 1x(x+1)(x1)=1x+1/2(x+1)1/2(x1)
Now, from (1)
y=1(x(x+1)(x1)dx
=1x+dx+1/2dxx+1+12dxx1
=log|x|+12.log|x+1|+12log|x1|+c
=22log|x|+12log|x+1|+12log|x1|+c
=12[2log|x|2+log|(x+1)(x1)|]+c
=12[logx2log|(x+1)(x1)|]+c
=12[log|x2(x21)|]+c [loga+logblogab]
=12logx21x2+c
y=12logx21x2+c …………..(1)
Given that
x=2;y=0
Substituting values in (1), we get
0=12log22122+c
0=12log34+c
c=12log34
Putting value of c in (1)
y=12logx21x212log3/4.

1225142_1462510_ans_9fda4390bd7143d4ad103c687d767406.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon