Find the particular solution of differential equation : 2yexydx+(y−2xexy)dy=0 given that x = 0 when y = 1.
Here 2yexydx+(y−2xexy)dy=0 ~~~ ⇒dxdy=2xexy−y2yexy
Put x=vy ⇒dxdy=v+ydvdy ∴v+ydvdy=2vyev−y2yev=2vev−12ev⇒ydvdy=2vev−12ev
⇒ydvdy=−12ev ⇒2∫evdv=−∫dyy⇒2ev=−log|y|+C⇒2exy=−log|y|+C.
As y = 1 when x = 0 so, 2e01=−log|1|+C⇒C=2.
Hence the required solution is, 2exy=2−log|y|.