Find the particular solution of the differential equation (1+e2x)dy+(1+y2)exdx=0, given that y=1 when x=0.
Open in App
Solution
(1+e2x)dy+(1+y2)exdx=0dy(1+y2)=−exdx(1+e2x)tan−1y=−exdx(1+e2x) Let t=exdt=exdxtan−1y=−dt(1+t2)tan−1y=−tan−1t+ctan−1y=−tan−1(ex)+c When x=0 and y=1, tan−11=−tan−1(e0)+cπ4=−π4+cc=π2 tan−1y=−tan−1(ex)+π2