(1+x2)dydx=emtan−1x−y⟶1
dydx=emtan−1x(1+x2)−y1+x2
dydx+y1+x2=emtan−1x(1+x2)⟶2
Comparing it with general linear differential equation
dydx+yP(x)=Q(x)
∴P(x)=11+x2 & Q(x)=emtan−1x1+x2
Integrating factor, IF=e∫P(x)dx
P(x)=11+x2
∫P(x)dx=∫11+x2dx=tan−1x
IF=etan−1x⟶3
Multiply the differential equation by etan−1x, we get
etan−1xdydx+yetan−1x1+x2=etan−1x.(m+1)1+x2
etan−1xdydx+yddx(etan−1x)=e(m+1)tan−1x1+x2
Using product rule we get,
ddx(yetan−1x)=e(m+1)tan−1x1+x2
Integrating, yetan−1x=∫e(m+1)tan−1x1+x2dx
Put tan−1x=t⇒dx1+x2=dt
yetan−1x=∫e(m+1)tdt=e(m+1)tm+1+C