wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation (1+x2)dydx=(emtan1xy), given that y =1 when x = 0.

Open in App
Solution

(1+x2)dydx=emtan1xy1
dydx=emtan1x(1+x2)y1+x2
dydx+y1+x2=emtan1x(1+x2)2
Comparing it with general linear differential equation
dydx+yP(x)=Q(x)
P(x)=11+x2 & Q(x)=emtan1x1+x2
Integrating factor, IF=eP(x)dx
P(x)=11+x2
P(x)dx=11+x2dx=tan1x
IF=etan1x3
Multiply the differential equation by etan1x, we get
etan1xdydx+yetan1x1+x2=etan1x.(m+1)1+x2
etan1xdydx+yddx(etan1x)=e(m+1)tan1x1+x2
Using product rule we get,
ddx(yetan1x)=e(m+1)tan1x1+x2
Integrating, yetan1x=e(m+1)tan1x1+x2dx
Put tan1x=tdx1+x2=dt
yetan1x=e(m+1)tdt=e(m+1)tm+1+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon