(1+x2)dydx=(em tan−1 x−y)
⇒ dydx+11+x2y=em tan−1x1+x2 ...(i)
Here, P=11+x2 and Q=em tan−1x1+x2
I.F. = e∫11+x2dx=etan−1x
y.etan−1x=∫ etan−1x.em tan−1x1+x2dx+c
= I+c
Put tan−1x=t
⇒ 11+x2dx=dt
I=∫ et.emtdt
= ∫ e(m+1)tdt
= e(m+1)tm+1=e(m+1)tan−1xm+1
∴ y.etan−1x=e(m+1)tan−1xm+1+c ...(ii)
When x=0, y=1, we have
1.e0=e0m+1+c
⇒ c=mm+1
Put the value of c in eq. (ii)
∴ y.etan−1x=e(m+1)tan−1xm+1+mm+1
⇒ y.(m+1)etan−1x=e(m+1)tan−1x+m