2yexydx+(y−2xexy)dy=0
⇒2exy=−(1−2xyexy)dydx
Put xy=t
x=yt
1=dydxt+ydtdy
⇒dydx=1t(1−ydtdx)
⇒2tet=−(1−2tet)1t(1−ydtdx)
⇒2tet=(2tet−1)(1−ydtdx)=2tet−1−y2tetdtdx+ydtdx
⇒1=y(1−2tet)dtdx=xt(1−2tet)dtdx
∫dxx=∫(1t−2et)dt
⇒lnx=lnt−2et+C
⇒lnx=lnxy−2exy+C
⇒lny=−2exy+C
At x=0,y=1
⇒0=−2e0+C⇒C=2
lny=2−2exy