Find the particular solution of the differential equation extan ydx+(2−ex)sec2 ydy=0, given that y=π4 when x = 0
OR
Find the particular solution of the differential equation dydx+2y tan x=sin x, given that y = 0 when x=π3.
We have extan ydx+(2−ex)sec2 ydy=0 ⇒∫exdx2−ex+∫sec2 ydytan y=0
Put ex=t⇒exdx=dt in 1st integral.
and , tan y = u ⇒sec2 ydy=du in 2nd integral.
∴∫dt2−t+∫duu=0 ⇒log|u|−log|2−t|=log|c| log∣∣tan y2−ex∣∣=log|c|⇒tany2−ex=c
Given that y=π4 when x = 0 so, tanπ42−e0=c ⇒c=1
Hence required solution is , tan y=2−ex or y=tan−1(2−ex)
OR We have dydx+2ytan x=sin X
⇒dydx+(2+tanx)y=sinx
This differential equation is of the form dydx+P(x)y=Q(x), where P(x) = 2 tan x, Q(x) = sin x.
So, integrating factor, I.F=e∫2 tan xdx=e2 log sec x=sec2 x
So, the solution is : y sec2x=∫sec2x sin xdx+c ⇒y sec2x=∫sec xtan xdx+c=sec x+c
Given that y = 0 when x=π3 so, 0×sec2π3=secπ3+c⇒c=−2
Hence the required solution is y sec2x=sec x−2 or y=cos x−2cos2x