wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation dydx3ycotx=sin2x, given that y = 2 when x=π2.

Open in App
Solution

Given,

dydx3ycotx=sin2x

dydx+(3cotx)y=sin2x

dydx+Py=Q

P=3cotx,Q=sin2x

I.F=ePdx

=e(3cotx)dx

=csc3x

y×I.F=Q×I.Fdx

y×csc3x=sin2xcsc3xdx

ycsc3x=2cosxsin2xdx

ycsc3x=2cscx+c

y=2sin2x+csin3x

y=2,x=π2

2=2sin2(π2)+csin3(π2)

2=2+c

c=4

y=2sin2x+4sin3x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon