wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation (tan1yx)dy=(1+y2)dx, given that when x=0,y=0.

Open in App
Solution


Given: (tan1yx)dy=(1+y2)dx

tan1yx1+y2=dydx

dydx+(11+y2)x=tan1y1+y2

The above equation is in the form of dydx+P(y)x+Q(y)

Here, P(y)=11+y2,Q(y)=tan1y1+y2

Integrating factor = e11+y2=etan1y

So, xetan1y=etan1y(tan1yx1+y2)dy

Put tan1y=t=dy1+y2=dt

xetan1y=ettdtxetan1y=tetdt(d(t)dtetdt)dt

xetan1y=tetet+Cxetan1y=(tan1y1)etan1y+C

Given that x=0,y=0, we get

0.etan10=(tan101)etan10+C

C=1

So, the required solution is: x=tan1y+etan1y1


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon