Given: (tan−1y−x)dy=(1+y2)dx
tan−1y−x1+y2=dydx
dydx+(11+y2)x=tan−1y1+y2
The above equation is in the form of dydx+P(y)x+Q(y)
Here, P(y)=11+y2,Q(y)=tan−1y1+y2
Integrating factor = e11+y2=etan−1y
So, xetan−1y=∫etan−1y(tan−1y−x1+y2)dy
Put tan−1y=t=dy1+y2=dt
xetan−1y=∫ettdt⇒xetan−1y=t∫etdt−∫(d(t)dt∫etdt)dt
xetan−1y=tet−et+C⇒xetan−1y=(tan−1y−1)etan−1y+C
Given that x=0,y=0, we get
0.etan−10=(tan−10−1)etan−10+C
C=1
So, the required solution is: x=tan−1y+e−tan−1y−1