x2dy=(2xy+y2)dx
dydx=2xy+y2x2
Put y=νx
ddx(νx)=2x(νx)+(νx)2x2
xdνdx+ν=2ν+ν2
xdνdx+ν=ν+ν2
dνν2+ν=dxx
Intregrate both sides
∫dν(ν2+ν)=∫dxx
∫dν(ν+12)2−(12)2=lnx+C
12×12ln∣∣
∣
∣
∣∣ν+12−12ν++12+12∣∣
∣
∣
∣∣=lnx+C
ln∣∣∣νν+1∣∣∣=lnx+C
ln∣∣∣y/xy/x+1∣∣∣=lnx+C
ln∣∣∣yx+y∣∣∣=lnx+C
ln(yx+y)−ln(x)=C⇒ln(yx(x+y))=C
y=1,x=1⇒ln(12)=C
∴yx(x+y)=12⇒2y=x(x+y)⇒y=x22−x