wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation x2dy=(2xy+y2)dx, given that y=1 when x=1.

Open in App
Solution

x2dy=(2xy+y2)dx
dydx=2xy+y2x2
Put y=νx
ddx(νx)=2x(νx)+(νx)2x2
xdνdx+ν=2ν+ν2
xdνdx+ν=ν+ν2
dνν2+ν=dxx
Intregrate both sides
dν(ν2+ν)=dxx
dν(ν+12)2(12)2=lnx+C
12×12ln∣ ∣ ∣ ∣ν+1212ν++12+12∣ ∣ ∣ ∣=lnx+C
lnνν+1=lnx+C
lny/xy/x+1=lnx+C
lnyx+y=lnx+C
ln(yx+y)ln(x)=Cln(yx(x+y))=C
y=1,x=1ln(12)=C
yx(x+y)=122y=x(x+y)y=x22x

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon