wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation (xy)dydx=(x+2y) given that y=0 when x = 1.

Open in App
Solution

Given: (xy)dydx=(x+2y)

x=1 & y=0

Now,

(xy)dydx=x+2ydydx=x+2yxy

The above equation is Homogenous Differential Equation,

Let y=vx ___(1) dydx=v+xdvdx

dydx=x+2yxyV+xdvdx=x+2vxxvx

xdvdx+V=1+2V1Vxdvdx=1+2v1vv

xdvdx=1+2vv+v21vxdvdx=1+v+v21v

(1v)dv1+v+v2=dxx

Integrating both sides, we have

(1v)dv1+v+v2=dxx(v1)dv1+v+v2=dxx

122v+13v2+v+1dv=logx+C

122v+1v2+v+1dv321v2+v+1dv=logx+C

Let v2+v+1=t(2v=1)dv=dt

12dtt321(v+12)2+34dv=logx+C

12log|t|32×23tan1⎜ ⎜ ⎜ ⎜v+1232⎟ ⎟ ⎟ ⎟=logx+C[1x2+a2dx=1atan1xa]

12log|v2+v+1|3tan1(2v+13)=logx+C

12logy2x2+yx+13tan1⎜ ⎜ ⎜2yx+13⎟ ⎟ ⎟=logx+C [From eq. (1)]

For x=1 & y=0

12log|0+0+1|3tan1(0+13)=log1+C03π5=C

C=3π6=π23

12logy2x2+yx+13tan1⎢ ⎢ ⎢2yx+13⎥ ⎥ ⎥=logxπ23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon