wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Find the particular solution of the differential equation (xy)dydx=x+2y, given that when x=1,y=0.

Open in App
Solution

Given (xy)dydx=x+2y
Let y=vxdydx=xdydx+v
dydx=x+2yx+y=x+2vxxyx=1+2v1v
xdvdx+v=1+2v1v
xdvdx=1+2v1vv=1+2vv+v21v
xdvdx=v2+v+11v
dv(v1v2+v+1)=dxx
dv⎜ ⎜ ⎜ ⎜ ⎜(v+12)32(v+12)2+34⎟ ⎟ ⎟ ⎟ ⎟=dxx
A integrating on both sides
v+12(v+12)2+34321(v+12)2+34=dxx
12log|v2+v+1|32×23tan1⎜ ⎜ ⎜v+123/2⎟ ⎟ ⎟=log|x|+c
Put v=y/x
12log|y2x2+yx+1|3tan1(2y+x3x)=log1+1+c
y=0,x=1
12log|0+0+1|3tan1(2(0)+13)=log(1)+c
3tan1(13)=c
c=3×π6=π23

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Methods of Solving First Order, First Degree Differential Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon