Given, (x−y)dydx=x+2y
By simplifying the above equation, we have
dydx=x+2yx−y ...(i)
Let F(x,y)=x+2yx−y, then
F(λx,λy)=λx+2λyλx−λy
= λ(x+2y)λ(x−y)
= λ0F(x,y)
F(x,y) is homogeneous function and hence given differential equation is homogeneous.
Now, let y=vx⇒dydx=v+xdvdx
Substituting these values in equation (i), we have
v+xdvdx=x+2vxx−vx⇒xdvdx=1+2v1−v−v=1+2v−v+v21−v=1+v+v21−v
⇒1−v1+v+v2dv=dxx
By integrating both sides, we obtain
∫1−vv2+v+1dv=∫dxx...(ii)
L.H.S. = ∫1−vv2+v+1dv
Let 1−v=A(2v+1)+B=2Av+(A+B)
Comparing coefficients of both sides, we obtain
2A=−1,A+B=1
or A=−12,B=32
∴∫1−vv2+v+1dv=∫−12(2v+1)+32v2+v+1dv
=−12∫2v+1v2+v+1dv+32∫dvv2+v+1
=−12∫2v+1v2+v+1dv+32∫dv(v+12)2+34
=−12log|v2+v+1|+32×2√3tan−1(v+12√32)
Now, susbstituting it in equation (ii), we obtain
−12log|v2+v+1|+√3tan−1(2v+1√3)=logx+C
⇒−12log|x2+xy+y2|+12logx2+√3tan−1(2y+x√3x)=logx+C
⇒−12log|x2+xy+y2|+√3tan−1(2y+x√3x)=C
Now, y=0, when x=1
⇒−12log(1)+√3tan−1(1√3)=C
⇒0+√3tan−1(tanπ6)=C
⇒C=√36π
Thus, required particular solution is:
−12log(x2+xy+y2)+√3tan−1(2y+x√3x)=√36π