Given differential equation is homogeneous.
∴ y=vx ⇒dydx=v+xdvdx
So,dydx=ysin(yx)−xeyxxsin(yx) ⇒v+xdvdx=vxsin(vxx)−xevxxxsin(vxx)=vsinv−evsinv⇒v+xdvdx=v−evsinv or xdvdx=−evsinv∴∫e−vsin v dv=−∫dxx ⇒I1=−log x+C1....(i)Now∴I1=∫e−vsin v dv=sin v∫e−vdv+∫e−v cos v dv⇒ =−e−v sin v−e−v cos v−∫ev sin v dv ⇒I1=−12e−v(sinv+cosv)+C2
Putting value of I1 in (i), −12e−v(sinv+cosv)=−log x2+C1+C2
e−yx(sinyx+cosyx)=log x2+C,Where C=−2C1−2C2
As it is given that y=0,when x=1,so C=1
Hence the solution is e−yx(sinyx+cosyx)=log x2+1.