(x+1)dydx=2e−y−1⟶eqn.1dydx+11+x=2e−y1+x
Eqn.1 can be written as:
12e−y−1dy=11+xdx⇒12ey−1dy=11+xdx⇒−(−ey)2−eydy=11+xdx⇒(−log|2−ey|)=log|x+1|+Cy=0,x=0⇒−log2=log1+C⇒C=−log2
Answer: log(x+1)−log2=−log(2−e−y)⇒log((x+1)(2−e−y)2)=0
Find a particular solution of the differential equation (x+1)dydx=2e−y−1, given that y=0 when x=0.
For the differential equation in given question find a particular solution satisfying the given condition. (x3+x2+x+1)dydx=2x2+x, y=1 when x=0.