Lets take the given differential equation
xlogex dydx+y=2logex
Divide by xlogx on both sides, we get,
dydx+yxlogex=2x
This is the linear differential equation. Compare the above equation with dydx+Py=Q, we get
P=1xlogex, Q=2x
∴ Integrating factor is given as
I.F.=e∫1xlogexdx
As, ∫f′(x)f(x)dx = loge(f(x))
∴ I.F.=logex
The general solution of the given differential equation can be given as
y⋅I.F.=∫ Q⋅(I.F.)dx+C
∴ylogex=∫2xlogex dx+C
We know, ∫fn(x)f′(x)dx=(f(x))n+1n+1
⇒ylogex=2(logex)22+C
⇒ylogex=(logex)2+C
At x=e, y=1
⇒C=0
The particular solution is
ylogex=(logex)2
∴y=logex