Let a, b, c be the sides of the old triangle and s be its semi-perimeter. Then,
s=12(a+b+c)
The sides of the new triangle are 2a,2b and 2c
.Let s' be its semi-perimeter. Then,
s′=12×(2a+2b+2c)
=a+b+c=2s
Let Δ and Δ′ be the areas of the old and new traiangles respectively. Then,
Δ=√s(s−a)(s−b)(s−c) and
Δ′=√s′(s′−2a)(s′−2b)(s′−2c)
⇒ Δ′=√2s(2s−2a)(2s−2b)(2s−2c) [∵ s′=2s]
Δ′=4√s(s−a)(s−)(s−c)=4Δ
∴ Increase in the are of the triangle
=Δ′−Δ=4Δ−Δ=3Δ
Hence, percentage increase in area
=(3ΔΔ×100)=300%